ODiplom // Лаборатория // 03.01.2017

Теплообмен при конденсации и кипении

Автор: Андрей Нестеров

Рубрика: Лаборатория

Опубликовано: 03.01.2017

Библиографическое описание:

Нестеров А.К. Теплообмен при конденсации и кипении [Электронный ресурс] // Образовательная энциклопедия ODiplom.ru

Хотя человек давно знаком с физическими процессами, в ходе которых происходят фазовые переходы веществ из одного агрегатного состояния в другое, они остаются предметом внимания ученых исследований, поскольку являются достаточно сложными и требуют научно-обоснованного подхода к изучению. Рассмотрим некоторые общие закономерности теплообмена при процессах конденсации и кипения веществ.

Конденсация и кипение

Процессы конденсации и кипения являются взаимно обратными процессами, отражая фазовый переход вещества из газообразного состояния в жидкость и наоборот.

Основными теоретико-методологическими вопросами, которые решаются в рамках данной области, являются возможности прогнозировать их протекание в прикладных целях.

Основными прикладными направлениями, для которых важны знания о процессах конденсации и кипения, являются решение исследовательских и практических задач в сфере естествознания, применение в метрологии, проектирование производственных комплексов и оборудования в химической, металлургической промышленности, а также других отраслях национальной экономической системы.

Молекулярно-кинетическая теория опирается на определенные представления о строении вещества и оперирует моделями вещества, с помощью которых устанавливаются законы поведения макроскопических систем, состоящих из бесконечно большого числа отдельных частиц. "Молекулярно-кинетическая теория – это учение о строении и свойствах вещества на основе представления о существовании атомов и молекул как наименьших частиц химических веществ" [1]. Следует отметить, что молекулярно-кинетическая теория описывает поведение различных систем на основе вероятностных моделей, чтобы установить взаимозависимость между макроскопическими величинами и микроскопическими характеристиками частиц. К макроскопическим величинам относятся, например, температура, объем, давление и др., а к микроскопическим характеристикам частиц – энергия, масса, импульс и др.

Следует отметить, что в рамках данной области естествознания, термодинамика не оперирует молекулярной структурой вещества и является наукой феноменологической. Термодинамика формирует выводы о свойствах вещества на основе сформированных опытным путем законов и оперирует только макроскопическими величинами, которые вводятся на основе физического эксперимента.

Таким образом, термодинамический и статистический подходы взаимно дополняют друг друга, поскольку только комплексное использование в научных изысканиях термодинамики и молекулярно-кинетической теории позволяет сформировать наиболее полное представление о свойствах систем, состоящих из бесконечно большого числа отдельных частиц.

В зависимости от условий и их изменения любой вещество может находиться в трех разных агрегатных состояниях: твердое, жидкое, газообразное. Процесс перехода из одного состояния в другое является фазовым переходом. Реальные газы, например, азот, водород, кислород и др., могут превратиться в жидкость при соблюдении определенных условий. Превращение газа в жидкость может наблюдаться только при температурах, которые ниже критической температуры (Ткр). "Например, для воды критическая температура – 647,3 К, азота – 126 К, кислорода – 154,3 К. При комнатной температуре (≈ 300 К) вода может находиться и в жидком, и в газообразном состояниях, а азот и кислород существуют только в виде газов" [3].

Фазовый переход из жидкого состояния в газообразное называется испарением. При этом процессе с поверхности жидкости вылетают наиболее быстрые молекулы, кинетическая энергия которых превышает энергию их связи с остальными молекулами жидкости. Это приводит к уменьшению средней кинетической энергии оставшихся молекул, т.е. к охлаждению жидкости (если нет подвода энергии от окружающих тел).

Фазовый переход, при котором молекулы пара возвращаются в жидкое состояние, называется конденсацией и является обратным процессу испарения.

"Процесс кипения жидкости происходит при температуре, при которой давление ее насыщенных паров становится равным внешнему давлению" [8]. Поскольку в жидкости всегда имеются мельчайшие пузырьки газа, испарение может происходить в объеме жидкости в случае, если давление насыщенного пара жидкости равно давлению газа в пузырьках или больше него. Вследствие этого жидкость будет испаряться внутрь пузырьков, что приведет к расширению пузырьков газа, которые будут всплывать на поверхность.

Теплообмен при конденсация паров газа

Жидкость и ее пар могут находиться в состоянии динамического равновесия, которое означает, что в закрытом сосуде число вылетающих с поверхности жидкости молекул, кинетическая энергия которых превышает энергию их связи с остальными молекулами жидкости, равно числу молекул пара, которые возвращаются в жидкое состояние. Динамическое равновесие означает, что скорость процессов испарения и конденсации примерно одинаковы. Пары газа, которые находятся в равновесии с жидкостью, называются насыщенным газом.

Число молекул, которые превращаются в жидкость, зависит от концентрации молекул пара газа и скорости их теплового движения, зависящей от температуры паров газа. Следовательно, в состоянии динамического равновесия температура вещества в жидком и газообразном состоянии является равновесной. "Давление насыщенного пара вещества зависит только от его температуры и не зависит от объема" [2]. Этим объясняется, что в двухфазной системе изотермы реальных газов содержат горизонтальные участки, как показано на рисунке 1.

Теплообмен при конденсации и кипении

Рисунок 1 – Изотермы реального газа [7]

На рисунке цифрами отмечено:

I – жидкое состояние вещества; II – двухфазная система "жидкость + насыщенный пар"; III – газообразное состояние вещества.

При увеличении температуры (Т) возрастает давление и плотность насыщенного пара вещества, а плотность жидкости уменьшается из-за теплового расширения. При условии Т = Ткр плотности пара и жидкости вещества становятся одинаковыми. При условии Т > Ткр физические отличия жидкого и газообразного состояния вещества нивелируются. Если при условии Т < Ткр изотермически сжимать ненасыщенный пар, то давление пара будет увеличиваться до тех пор, пока не сравняется с давлением насыщенного пара. Дальнейшее уменьшение объема приведет к тому, что на дне сосуда образуется жидкость и установится динамическое равновесие, при уменьшении объема все большая часть паров газа будет конденсироваться, при этом давление меняться не будет, когда все пары газа возвратятся в жидкое состояние, давление резко увеличивается при дальнейшем сокращении объема по причине малой сжимаемости жидкости. При этом процесс преобразования вещества из паров газа в жидкость может произойти миновав двухфазную область, как показывает линия ABC.

Давление насыщенного пара с ростом температуры увеличивается очень быстро и при постоянной концентрации молекул возрастает прямо пропорционально росту температуры газа. При этом рост температуры обуславливает не только увеличение средней кинетической энергии молекул, но и их концентрации, поэтому давление насыщенного пара увеличивается быстрее, чем давление идеального газа при постоянной концентрации молекул вещества.

С точки зрения естественнонаучного содержания,

Процесс теплоотдачи при конденсации насыщенного пара является одновременным переносом теплоты и массы.

Перенос теплоты определяется теплотой парообразования, масса – количеством сконденсированного пара. При процессе конденсации молекулы пара находятся в состоянии турбулентного потока, вихри которого переносят молекулы вещества в газообразном состоянии к охлаждаемой стенке сосуда, на которой они конденсируются. Следствием является резкое уменьшение объема пара, в результате создается собственное поступательное движение молекул вещества в газообразном состоянии к стенке сосуда. Образовавшийся на стенке сосуда конденсат стекает по ней, а к стенке подходит собственный пар. При этом в научно-прикладном аспекте процесс переноса теплоты и основной массы вещества в газообразном состоянии к стенке сосуда происходит настолько быстро, что степень турбулентности потока молекул вещества в газообразном состоянии не оказывается сколько-нибудь значимого влияния на сам процесс конденсации.

Процесс конденсации неразрывно связан с теплообменом, так как при конденсации паров газа выделяется теплота фазового перехода, поэтому справедливы два условия: "температура стенки сосуда должна быть ниже температуры насыщения при данном давлении и необходим отвод теплоты от поверхности, на которой образуется конденсат" [3]. При пленочной конденсации конденсат стекает с поверхности теплообмена в виде простой пленки, для этого должно соблюдаться условие смачивания жидкостью данной поверхности. В случае, если поверхность теплообмена не смачивается или, например, находится в загрязненном состоянии, то будет иметь место конденсация капельного типа, когда конденсат будет формироваться в виде капель разного размера. Наконец, смешанная конденсация подразумевает, что на различных участках поверхности теплообмена может проходить процесс конденсации пленочного и капельного типа одновременно.

Следует отметить, что для разных типов процесса конденсации интенсивность теплообмена отличается следующим образом:

  • интенсивность теплообмена при конденсации пленочного типа будет ниже, чем при конденсации капельного типа;
  • интенсивность теплообмена при конденсации смешанного типа будет зависеть от характера и соотношения типов конденсации, находясь в пределах минимального и максимального значений для соответствующих типов конденсации [8].

В этой связи в практике проектирования и применения теплообменных устройств превалирует пленочная конденсация из-за того, что интенсивность процесса теплоотдачи при конденсации пленочного типа ниже капельного из-за термического сопротивления пленки конденсата, тогда как организация процесса капительной конденсации в устройствах теплообмена дороже организации процесса пленочной конденсации.

Теплообмен при конденсации и кипении

Рисунок 2 – Термическое сопротивление пленки определяется механизмом переноса теплоты, зависящим от режима течения конденсата [6]

В процессе конденсации процесс теплообмена при пленочной конденсации не является лимитирующем, при конденсации пленочного типа вещества в газообразном состоянии термическое сопротивление сосредоточено в пленке конденсата.

Теплообмен при кипении жидкости

В закрытом сосуде процесс кипения жидкости происходить не может, так как при каждом значении температуры устанавливается равновесие вещества в жидком и газообразном состоянии, при этом пары газа вещества являются насыщенным паром. По кривой равновесия давления и температуры р0 (Т) можно определять температуру кипения жидкости при разных давлениях. При этом необходимо отметить, что из газообразного и жидкого состояния любое вещество может перейти в твердое состояние. Термодинамическое равновесие между двумя фазами вещества может сохраняться при заданной температуре и давлении в системе.

Зависимость равновесного давления от температуры представляет собой кривую фазового равновесия. На рисунке 3 изображена фазовая диаграмма вещества, кривые равновесия разделяют систему координат на отдельные области, соответствующие твердому, жидкому и газообразному состоянию вещества.

Теплообмен при конденсации и кипении

Рисунок 3 – Фазовая диаграмма вещества [7]

На рисунке цифрами обозначено:

I – твердое состояние вещества, II – жидкое состояние вещества, III – газообразное состояние вещества.

Кривая 0Т соответствует равновесию между твердым и газообразным состоянием вещества и называется кривой сублимации. Кривая ТК соответствует равновесию между жидким и газообразным состоянием вещества, обрываясь в критической точке К, и называется кривой испарения. Кривая ТМ соответствует равновесию между твердым и жидким состоянием вещества и называется кривой плавления. В точке тройной точке Т могут сосуществовать в равновесии все три фазы.

"Кипение соответствует процессу интенсивного образования пара внутри объема жидкости при температуре насыщения или выше этой температуры" [2]. В ходе данного процесса поглощается теплота фазового перехода, следовательно, чтобы кипение было осуществимо, требуется обеспечивать нагрев вещества, иными словами, подводить теплоту. Существует поверхностное и объемное кипение, причем последнее встречается достаточно редко. При объемном кипении, например, в результате резкого уменьшения давления, наблюдается значительный перегрев жидкости, а температура вещества превышает температуру насыщения при таком давлении. Поверхностное кипение происходит вследствие подвода теплоты к жидкости от твердой поверхности, которая соприкасается с веществом, находящимся в жидком состоянии.

При кипении высокая интенсивность теплообмена и сам процесс кипения широко используется на практике и производстве: выпаривание, перегонка, испарители, кипячение, преобразование веществ для изменения свойств и т.д. При этом для возникновения кипения необходимо, чтобы температура жидкости была больше температуры насыщения, т.е. соблюдалось бы условие Тжидк > Тнасыщ, а также наличие центров парообразования. Чтобы теплота передавалась от стенки к кипящей жидкости, необходим перегрев стенки относительно температуры насыщения: ∆Т = Тст – Ткип

На рисунке 4 показана зависимость удельной тепловой нагрузки q и коэффициента теплоотдачи α от температурного напора ∆Т.

Теплообмен при конденсации и кипении

Рисунок 4 – Зависимость удельной тепловой нагрузки q и коэффициента теплоотдачи α от температурного напора ∆Т [4]

В области АВ перегрев еще мал, активных центров парообразования недостаточно, а теплообмен определяется законами свободной конвекции около стенки α ~ ∆Т1.3. В области ВС перегрев выше, становится больше центров парообразования, теплообмен резко увеличивается, при этом наблюдается турбулизация пограничного слоя около стенки. Эта область называется пузырчатым кипением. Схема процесса теплоотдачи при пузырчатом кипении показана на рисунке 5.

Теплообмен при конденсации и кипении

Рисунок 5 – Схема процесса теплоотдачи при пузырчатом кипении [8]

Часть жидкости испаряется, образуя таким способом пузырьки вещества в газообразном состоянии. Пузырьки вещества увлекают значительные массы жидкости, когда они поднимаются и увеличиваются в объеме, на место увлеченной и испарившейся жидкости поступает свежие потоки жидкости, за счет чего происходит циркуляция жидкости у поверхности нагрева, что приводит к ускорению процесса теплоотдачи. В этот момент α ~ ∆Т2/3. Высокий уровень интенсивности теплообмена при пузырчатом режиме кипения обусловлен степенью турбализации пограничного слоя у поверхности, которая пропорциональна числу и объему пузырьков, которые формируются в микровпадинах на поверхности нагрева.

В точке С коэффициент теплоотдачи достигает своего максимального значения, что соответствует максимальному значению удельной тепловой нагрузки q, далее будет наблюдаться резкое снижение коэффициента теплоотдачи. При соблюдении условия ∆Т ≥ ∆Ткр происходит слияние пузырьков, которые находятся близко друг от друга или образуются рядом, у поверхности стенки будет возникать паровая пленка, которая будет создавать дополнительное термическое сопротивление процессу теплоотдачи. Значение коэффициента теплоотдачи α резко падает. Этот режим процесса кипения называется пленочным. Следует отметить, что хотя пленка вещества в газообразном состоянии очень нестабильна, постоянно разрушаясь и возникая вновь, такой режим кипения серьезно ухудшает теплообмен, соответственно, на практике он крайне нежелателен.

Выводы

По итогам рассмотрения процессов кипения и конденсации можно судить о том, что они имеют большое значение в прикладных аспектах бытовой жизнедеятельности человека и производственных процессах.

В ходе изучения вопросов, связанных с теплообменом при протекании процессов конденсации и кипении, было установлено, что эти привычные человеку процессы имеют весьма сложную молекулярно-кинетическую природу. От протекания данных процессов зависит решение не только бытовых задач в повседневной деятельности человека, но и различные и многосторонние аспекты функционирования сложных технических систем, производственных комплексов, а также отдельных объектов и элементов инфраструктуры жилищно-коммунального хозяйства.

Процесс теплообмена при конденсации пара протекает при изменении агрегатного состояния теплоносителей. Специфика процесса конденсации состоит в том, что процесс теплообмена происходит при постоянной температуре.

При пузырчатом кипении теплообмен состоит из переноса теплоты от стенки к жидкости, затем жидкостью теплота передается внутренней поверхности пузырьков пара вещества в виде теплоты испарения. Следует отметить, что теплообмен между стенкой и непосредственно пузырьками вещества в газообразном состоянии ничтожно мал, так как мала поверхность соприкосновения пузырьков пара со стенкой и мала теплопроводность пара. Для осуществления теплообмена жидкость должна иметь температуру несколько выше температуры пара, следовательно, при кипении температура жидкости выше температуры насыщенного пара над поверхностью жидкости.

Список литературы

  1. Алексеев Г.Н. Общая теплотехника. – М.: Высшая школа, 1980. – 552 с.
  2. Бухмиров В.В. Теоретические основы теплотехники. – Иваново: изд-во ИГЭУ, 2008.
  3. Ерохин В.Г., Маханько М.Г. Основы термодинамики и теплотехники. – М.: Ленанд, 2014. – 232 с.
  4. Круглов Г.А., Булгакова Р.И., Круглова Е.С. Теплотехника. – СПб.: Лань, 2010. – 208 с.
  5. Мазур Л.С. Техническая термодинамика и теплотехника. – М.: ГЭОТАР, 2003. – 352 с.
  6. Самарин О.Д. Теплофизика. Энергосбережение. Энергоэффективность. – М.: изд-во Ассоциации строительных вузов, 2011. – 296 с.
  7. Теплотехника / под ред. В.Н. Луканин. – М.: Высшая школа, 2009. – 678 с.
  8. Теплотехника / под ред. М.Г. Шатров. – М.: Академия, 2013. – 288 с.